• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞) | Yang, Wei-Wei (Yang, Wei-Wei.) | Yuan, Ming-Zhe (Yuan, Ming-Zhe.)

收录:

EI Scopus

摘要:

Due to the multi-variable, nonlinear, large time delay and strong coupling features of the wastewater treatment process, a recurrent high-order neural network is used to model the key water quality parameters(Chemical Oxygen Demand, Biological Oxygen Demand, Suspended Solid and Ammonia Nitrogen) for the wastewater treatment process, and the neural network is trained by an filtering algorithm. Operational data of a wastewater treatment plant is employed to illustrate the efficacy of the proposed modeling method. Meanwhile, the results are compared with feed-forward neural network and the general recurrent neural network to indicate the modeling accuracy of the recurrent high-order neural network. © 2011 ACADEMY PUBLISHER.

关键词:

Ammonia Biochemical oxygen demand Bioinformatics Biological water treatment Chemical bonds Feedforward neural networks Filtration Oxygen Reclamation Recurrent neural networks Wastewater treatment Water quality

作者机构:

  • [ 1 ] [Qiao, Jun-Fei]Beijing University of Technology, College of Electronic and Control Engineering, Beijing, China
  • [ 2 ] [Yang, Wei-Wei]Beijing University of Technology, College of Electronic and Control Engineering, Beijing, China
  • [ 3 ] [Yuan, Ming-Zhe]Key Laboratory of Industrial Informatics, Shenyang Institute of Automation, Chinese Academy of Science, Shenyang, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Journal of Computers

ISSN: 1796-203X

年份: 2011

期: 8

卷: 6

页码: 1570-1577

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:156

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:199/3613668
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司