• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Jihan (Li, Jihan.) | Li, Xiaoli (Li, Xiaoli.) (学者:李晓理) | Wang, Kang (Wang, Kang.)

收录:

Scopus SCIE

摘要:

Urbanization, industrialization, and regional economic integration have developed rapidly in China in recent years. Air pollution has attracted more and more attention. However, PM2.5 is the main particulate matter in air pollution. Therefore, how to predict PM2.5 accurately and effectively has become a concern of experts and scholars. For the problem, atmosphere PM2.5 concentration prediction algorithm is proposed based on time series and interactive multiple model in this paper. PM2.5 concentration is collected by using the monitor at different air quality levels. The time series models are established by historical PM2.5 concentration data, which were given by the autoregressive model (AR). In the paper, three PM2.5 time series models are established for three different air quality levels. Then, the three models are converted to state equation, respectively, by autoregressive integrated with Kalman filter (AR-Kalman) approaches. Besides, the proposed interactive multiple model (IMM) algorithm is, respectively, compared with autoregressive (AR) model algorithm and AR-Kalman prediction algorithm. It is turned out the proposed IMM algorithm is more accurate than the other two approaches for PM2.5 prediction, and it is effective.

关键词:

作者机构:

  • [ 1 ] [Li, Jihan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Xiaoli]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Kang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Xiaoli]Beijing Lab Urban Mass Transit, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • 李晓理

    [Li, Xiaoli]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Li, Xiaoli]Beijing Lab Urban Mass Transit, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ADVANCES IN METEOROLOGY

ISSN: 1687-9309

年份: 2019

卷: 2019

2 . 9 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:123

被引次数:

WoS核心集被引频次: 16

SCOPUS被引频次: 21

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:859/3916449
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司