• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jin, Liu (Jin, Liu.) (学者:金浏) | Zhang, Renbo (Zhang, Renbo.) | Li, Liang (Li, Liang.) | Du, Xiuli (Du, Xiuli.) (学者:杜修力) | Yao, Yunlong (Yao, Yunlong.)

收录:

EI Scopus SCIE

摘要:

To investigate the impact response of SFRC beams at elevated temperatures, an experimental test was conducted. The impact performances of SFRC beams with fibers volume fraction of fibers of 0, 1% and 2% were tested at 25 degrees C, 400 degrees C and 600 degrees C. Moreover, a simplified analysis approach was developed to predict the high-temperature impact response of the SFRC beams. The experimental results indicate that the addition of steel fiber has an ignorable influence on the evolution and distribution of temperatures when the volume fraction of fibers is no larger than 2%. However, steel fiber can mitigate the burst of concrete during heating at 400 degrees C while has no significant influence at 600 degrees C owing to the weakening of fiber and concrete materials. Up to 600 degrees C, crack of SFRC beams subjected to simultaneous effect of fire and impact loadings can be prevented or mitigated. In addition, the incorporation of steel fibers can enhance the load bearing capacity and toughness, reduce deflection and improve recovery capacity of SFRC beams in both static and high-temperature impact loading scenarios. Due to the degradation of overall stiffness, the peak impact force would decrease at elevated temperatures. Comparing the analytical results with the test measurements, a good agreement can be noted, implying that the present simplified approach can model effectively the mechanical behavior of SFRC beams under the scenario of fire and impact loadings.

关键词:

High temperature Single-degree-of-freedom Layered-section method Impact loading Steel fiber reinforced concrete beam

作者机构:

  • [ 1 ] [Jin, Liu]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 2 ] [Zhang, Renbo]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 3 ] [Li, Liang]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 4 ] [Du, Xiuli]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 5 ] [Yao, Yunlong]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China

通讯作者信息:

  • [Li, Liang]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENGINEERING STRUCTURES

ISSN: 0141-0296

年份: 2019

卷: 197

5 . 5 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

JCR分区:1

被引次数:

WoS核心集被引频次: 14

SCOPUS被引频次: 15

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:458/4958868
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司