• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Peng, Jin (Peng, Jin.) | Hao, Dongmei (Hao, Dongmei.) | Liu, Haipeng (Liu, Haipeng.) | Liu, Juntao (Liu, Juntao.) | Zhou, Xiya (Zhou, Xiya.) | Zheng, Dingchang (Zheng, Dingchang.)

收录:

Scopus SCIE PubMed

摘要:

Background. Uterine contraction (UC) is the tightening and shortening of the uterine muscles which can indicate the progress of pregnancy towards delivery. Electrohysterogram (EHG), which reflects uterine electrical activities, has recently been studied for UC monitoring. In this paper, we aimed to evaluate different EHG segments for recognizing UCs using the convolutional neural network (CNN). Materials and Methods. In the open-access Icelandic 16-electrode EHG database (122 recordings from 45 pregnant women), 7136 UC and 7136 non-UC EHG segments with the duration of 60 s were manually extracted from 107 recordings of 40 pregnant women to develop a CNN model. A fivefold cross-validation was applied to evaluate the CNN based on sensitivity (SE), specificity (SP), and accuracy (ACC). Then, 1056 UC and 1056 non-UC EHG segments were extracted from the other 15 recordings of 5 pregnant women. Furthermore, the developed CNN model was applied to identify UCs using different EHG segments with the durations of 10 s, 20 s, and 30 s. Results. The CNN achieved the average SE, SP, and ACC of 0.82, 0.93, and 0.88 for a 60 s EHG segment. The EHG segments of 10 s, 20 s, and 30 s around the TOCO peak achieved higher SE and ACC than the other segments with the same duration. The values of SE from 20 s EHG segments around the TOCO peak were higher than those from 10 s to 30 s EHG segments on the same side of the TOCO peak. Conclusion. The proposed method could be used to determine the efficient EHG segments for recognizing UC with the CNN.

关键词:

作者机构:

  • [ 1 ] [Peng, Jin]Beijing Univ Technol Intelligent Physiol Measurem, Beijing Int Platform Sci & Technol Cooperat, Coll Life Sci & Bioengn, Beijing 100024, Peoples R China
  • [ 2 ] [Hao, Dongmei]Beijing Univ Technol Intelligent Physiol Measurem, Beijing Int Platform Sci & Technol Cooperat, Coll Life Sci & Bioengn, Beijing 100024, Peoples R China
  • [ 3 ] [Liu, Haipeng]Anglia Ruskin Univ, Fac Hlth Educ Med & Social Care, Med Technol Res Ctr, Chelmsford CM1 1SQ, Essex, England
  • [ 4 ] [Zheng, Dingchang]Anglia Ruskin Univ, Fac Hlth Educ Med & Social Care, Med Technol Res Ctr, Chelmsford CM1 1SQ, Essex, England
  • [ 5 ] [Liu, Juntao]Peking Union Med Coll Hosp, Dept Obstet, Beijing 100730, Peoples R China
  • [ 6 ] [Zhou, Xiya]Peking Union Med Coll Hosp, Dept Obstet, Beijing 100730, Peoples R China

通讯作者信息:

  • [Hao, Dongmei]Beijing Univ Technol Intelligent Physiol Measurem, Beijing Int Platform Sci & Technol Cooperat, Coll Life Sci & Bioengn, Beijing 100024, Peoples R China;;[Zheng, Dingchang]Anglia Ruskin Univ, Fac Hlth Educ Med & Social Care, Med Technol Res Ctr, Chelmsford CM1 1SQ, Essex, England

查看成果更多字段

相关关键词:

相关文章:

来源 :

BIOMED RESEARCH INTERNATIONAL

ISSN: 2314-6133

年份: 2019

卷: 2019

ESI学科: BIOLOGY & BIOCHEMISTRY;

ESI高被引阀值:169

JCR分区:3

被引次数:

WoS核心集被引频次: 14

SCOPUS被引频次: 17

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1157/4288130
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司