收录:
摘要:
The reinforced concrete core wall is the key element in high-rise buildings for seismic design. In order to study the seismic performance of core walls, this paper deals with finite element (FE) analysis of the concrete core wall under lateral loading. The FE model, using the software ABAQUS, is proposed to carried out the nonlinear analysis and is verified by comparing the computational results with the corresponding experimental ones obtained from laboratory tests of large-scale specimens. On this basis, a series of reinforced concrete core walls with different parameters are simulated and analyzed under lateral loading, which include their opening sizes, concrete strengths and span-height ratios of coupling beams. The core wall with double coupling beams is also studied and compared with that with single coupling beams. The results show that concrete strengths have a significant effect on the performance of core walls; opening sizes play an important role in the failure of coupling beams and wall piers; with the use of double coupling beams, the ductility of core walls is significantly improved while their load-carrying capacity is just slightly reduced, so it is a feasible measure improving the seismic performance of concrete core walls.
关键词:
通讯作者信息:
电子邮件地址: