• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Ming (He, Ming.) | Du, Yong-ping (Du, Yong-ping.) (学者:杜永萍)

收录:

EI Scopus

摘要:

Many applications today need to manage data that is uncertain, such as information extraction (IE), data integration, sensor RFID networks, and scientific experiments. Top-k queries are often natural and useful in analyzing uncertain data in those applications. In this paper, we study the problem of answering top-k queries in a probabilistic framework from a state-of-the-art statistical IE model-semi-Conditional Random Fields (CRFs)-in the setting of Probabilistic Databases that treat statistical models as first-class data objects. We investigate the problem of ranking the answers to Probabilistic Databases query. We present efficient algorithm for finding the best approximating parameters in such a framework to efficiently retrieve the top-k ranked results. An empirical study using real data sets demonstrates the effectiveness of probabilistic top-k queries and the efficiency of our method. © 2010 ACADEMY PUBLISHER.

关键词:

Artificial intelligence Database systems Data integration Data mining Information management Information retrieval Random processes

作者机构:

  • [ 1 ] [He, Ming]College of Computer Science, Beijing University of Technology, Beijing, China
  • [ 2 ] [Du, Yong-ping]College of Computer Science, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Computers

ISSN: 1796-203X

年份: 2010

期: 11

卷: 5

页码: 1663-1669

ESI学科: COMPUTER SCIENCE;

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:208/3605069
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司