• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Mao, Guo-Jun (Mao, Guo-Jun.) | Sun, Xiao-Xi (Sun, Xiao-Xi.) | Zong, Dong-Jun (Zong, Dong-Jun.)

收录:

EI Scopus PKU CSCD

摘要:

In order to get valuable information, mining frequent itemsets from multidimensional data stream is needed. Through introduction of the concept of multidimensional item and multidimensional itemsets, the multidimensional data stream is expressed. A compact, compressed data structure MaxFP-Tree is designed to maintain multidimensional sets. Based on MaxFP-Tree, an incremental update algorithm to mine maximal frequent multidimensional itemsets is given. Experiment results show that the model and the algorithm of mining multidimensional data streams are efficient.

关键词:

Data mining Trees (mathematics) Forestry

作者机构:

  • [ 1 ] [Mao, Guo-Jun]College of Computer Science, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Sun, Xiao-Xi]College of Computer Science, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Zong, Dong-Jun]College of Computer Science, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2010

期: 6

卷: 36

页码: 820-827

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:180/3773337
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司