• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞) | Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂)

收录:

EI Scopus PKU CSCD

摘要:

Due to the fact that the conventional radial basis function (RBF) neural network cannot change the structure on-line, a new dynamic structure RBF (D-RBF) neural network is designed in this paper. D-RBF is based on the sensitivity analysis (SA) method to analyze the output values of the hidden nodes for the network output, then the hidden nodes in the RBF neural network can be inserted or pruned. The final structure of D-RBF is not too large or small for the objectives, and the convergence of the dynamic process is investigated in this paper. The grad-descend method for the parameter adjusting ensures the convergence of D-RBF neural network. The structure of the RBF neural network is self-organizing, and the parameters are self-adaptive. In the end, D-RBF is used for the non-linear functions approximation and the non-linear systems modelling. The results show that this proposed D-RBF obtains favorable self-adaptive and approximating ability. Especially, comparisons with the minimal resource allocation networks (MRAN) and the generalized growing and pruning RBF (GGAP-RBF) reveal that the proposed algorithm is more effective in generalization and finally neural network structure. Copyright © 2010 Acta Automatica Sinica. All right reserved.

关键词:

Chemical oxygen demand Sensitivity analysis Functions Structural optimization Radial basis function networks Linear systems

作者机构:

  • [ 1 ] [Qiao, Jun-Fei]College of Electronic and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Han, Hong-Gui]College of Electronic and Control Engineering, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Acta Automatica Sinica

ISSN: 0254-4156

年份: 2010

期: 6

卷: 36

页码: 865-872

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 69

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1079/3899534
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司