收录:
摘要:
The energy distribution of each frequency sub-band of acoustic emission(AE) signal after decomposition is related to the type of roller bearing defects, AE signals measured from a roller bearing test rig were decomposed into a number of frequency sub-bands by using harmonic wavelet packet, and energy features associated with each sub-band were selected. The energy features were then used as inputs to a back-propagation neural network classifiers for identifying the bearing's fault. In the bearing fault recognition, harmonic wavelet packet was compared with Daubechies wavelet packet. The experimental results indicated that the proposed fault diagnosis method is effective and can be used for roller bearing fault recognition.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
Journal of Vibration and Shock
ISSN: 1000-3835
年份: 2010
期: 10
卷: 29
页码: 162-165