• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Huibing (Zhang, Huibing.) | Hou, Yibin (Hou, Yibin.) (学者:侯义斌) | Huang, Zhangqin (Huang, Zhangqin.) (学者:黄樟钦) | Hou, Cuiqin (Hou, Cuiqin.) | Liu, Qian (Liu, Qian.)

收录:

EI Scopus

摘要:

Given the rapidly increasing number of available Web services and the different user QoS requirement, selecting a suitable service for each user adaptively is difficulty in AmI environment. In this paper, we propose a backward inference based user QoS requirements self-learning model to learn the users' special preferences by using the service evaluation information and then construct a user's QoS cognitive set by means of learned information. We also put forward a dynamic adaptive service selection algorithm based on the dynamic multi-attribute decision making theory. The algorithm, firstly, can generate user's QoS requirement preferences according to the information of candidate services and user's QoS cognitive set. Then it automatic selects a suitable service for user by using the services' history information, service providers' statements values and user QoS requirements. Last, we verify the usability of the model through prototypical implementation and explain its advantage and deficiency. © 2010 Binary Information Press.

关键词:

Adaptive algorithms Decision making Decision theory Information use Quality of service Web services

作者机构:

  • [ 1 ] [Zhang, Huibing]Embedded Software and Systems Institute, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Zhang, Huibing]Guilin University of Electronic Technology, Guilin 541004, China
  • [ 3 ] [Hou, Yibin]Embedded Software and Systems Institute, Beijing University of Technology, Beijing 100124, China
  • [ 4 ] [Huang, Zhangqin]Embedded Software and Systems Institute, Beijing University of Technology, Beijing 100124, China
  • [ 5 ] [Hou, Cuiqin]Embedded Software and Systems Institute, Beijing University of Technology, Beijing 100124, China
  • [ 6 ] [Liu, Qian]Embedded Software and Systems Institute, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Journal of Information and Computational Science

ISSN: 1548-7741

年份: 2010

期: 11

卷: 7

页码: 2323-2331

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:74/3604826
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司