• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Chen, Chao (Chen, Chao.) (Scholars:陈超) | Yu, Nan (Yu, Nan.) | Yang, Fengguang (Yang, Fengguang.) | Mahkamov, Khamid (Mahkamov, Khamid.) | Han, Fengtao (Han, Fengtao.) | Li, Yaru (Li, Yaru.) | Ling, Haoshu (Ling, Haoshu.)

Indexed by:

EI Scopus SCIE

Abstract:

Space formation of passive solar greenhouses plays a dominant role in the creation of required lighing and thermal conditions and in increasing the efficiency of solar energy utilisation. In this study, the energy balance equation analysis was implemented in EnergyPlus software to numerically model the thermal performance of a passive solar greenhouse, located in the Beijing Region. Comparison of numerical and experimental data indicated a high prediction accuracy of the numerical model, which then was used to conduct a parametric analysis of the effect of main physical dimensions on the energy performance of such greenhouses. As a result, a range of rational values of physical dimensions was proposed for this type of greenhouses. The originality of the research approach is using parametric analysis data, obtained from the calibrated numerical model of greenhouses, to derive novel analytical correlations for rapid calculation of the main physical dimensions of passive solar greenhouses. The correctness of the proposed novel analytical method for calculation of main physical dimensions of passive solar greenhouses was experimentally confirmed in a series of comparative physical tests on various greenhouse models. The advantage of the proposed analytical correlations is that these are valid for a wide range of geographical latitudes in China and other regions, where a similar type of greenhouses can be exploited.

Keyword:

Heating load The effective nocturnal accumulative temperature Space formation Passive solar greenhouse

Author Community:

  • [ 1 ] [Chen, Chao]Beijing Univ Technol, Beijing Key Lab Green Bldg Environm & Energy Effi, Beijing 100124, Peoples R China
  • [ 2 ] [Yu, Nan]Beijing Univ Technol, Beijing Key Lab Green Bldg Environm & Energy Effi, Beijing 100124, Peoples R China
  • [ 3 ] [Yang, Fengguang]Beijing Univ Technol, Beijing Key Lab Green Bldg Environm & Energy Effi, Beijing 100124, Peoples R China
  • [ 4 ] [Han, Fengtao]Beijing Univ Technol, Beijing Key Lab Green Bldg Environm & Energy Effi, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Yaru]Beijing Univ Technol, Beijing Key Lab Green Bldg Environm & Energy Effi, Beijing 100124, Peoples R China
  • [ 6 ] [Mahkamov, Khamid]Northumbria Univ, Fac Engn & Environm, Newcastle Upon Tyne, Tyne & Wear, England
  • [ 7 ] [Ling, Haoshu]Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China

Reprint Author's Address:

  • 陈超

    [Chen, Chao]Beijing Univ Technol, Beijing Key Lab Green Bldg Environm & Energy Effi, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

SOLAR ENERGY

ISSN: 0038-092X

Year: 2019

Volume: 191

Page: 46-56

6 . 7 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:136

Cited Count:

WoS CC Cited Count: 37

SCOPUS Cited Count: 42

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:1048/5398004
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.