• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Wang, Lei (Wang, Lei.) | Yang, Cuili (Yang, Cuili.)

收录:

EI Scopus SCIE

摘要:

Echo state network (ESN), a novel recurrent neural network, has a randomly and sparsely connected reservoir. Since the reservoir size is very large, the collinearity problem may exist in the ESN. To address this problem and get a sparse architecture, an adaptive lasso echo state network (ALESN) is proposed, in which the adaptive lasso algorithm is used to calculate the output weights. The ALESN combines the advantages of quadratic regularization and adaptively weighted lasso shrinkage; furthermore, it has the oracle properties and can deal with the collinearity problem. Meanwhile, to obtain the optimal model, the selection of tuning regularization parameter based on modified Bayesian information criterion is proposed. Simulation results show that the proposed ALESN has better performance and relatively uniform output weights than some other existing methods.

关键词:

Modified Bayesian information criterion Nonlinear system modeling Adaptive lasso algorithm Echo state network Collinearity problem

作者机构:

  • [ 1 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Wang, Lei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Yang, Cuili]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Qiao, Junfei]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 5 ] [Wang, Lei]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 6 ] [Yang, Cuili]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

通讯作者信息:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China;;[Qiao, Junfei]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

NEURAL COMPUTING & APPLICATIONS

ISSN: 0941-0643

年份: 2019

期: 10

卷: 31

页码: 6163-6177

6 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

JCR分区:1

被引次数:

WoS核心集被引频次: 31

SCOPUS被引频次: 25

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:463/3904823
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司