• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lai, Ying-Xu (Lai, Ying-Xu.) (学者:赖英旭)

收录:

EI Scopus PKU CSCD

摘要:

Machine learning or data mining method can identify new or unknown malicious executables with some degree of success. Feature selection is a key to applying data mining or machine learning to detect malicious executables. In order to improve detecting accuracy, a new method of extracting most representative features is purposed. The new classifier based on strings achieves has high detection rates and can be expected to perform well in real-world conditions.

关键词:

Data mining Feature extraction Machine learning

作者机构:

  • [ 1 ] [Lai, Ying-Xu]College of Computer Science, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

  • 赖英旭

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2009

期: 12

卷: 35

页码: 1703-1709

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

在线人数/总访问数:641/3902860
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司