• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Cuili (Yang, Cuili.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Ahmad, Zohaib (Ahmad, Zohaib.) | Nie, Kaizhe (Nie, Kaizhe.) | Wang, Lei (Wang, Lei.)

收录:

EI Scopus SCIE PubMed

摘要:

Recently, the echo state networks (ESNs) have been widely used for time series prediction. To meet the demand of actual applications and avoid the overfitting issue, the online sequential ESN with sparse recursive least squares (OSESN-SRLS) algorithm is proposed. Firstly, the l(0) and l(1)norm sparsity penalty constraints of output weights are separately employed to control the network size. Secondly, the sparse recursive least squares (SRLS) algorithm and the subgradients technique are combined to estimate the output weight matrix. Thirdly, an adaptive selection mechanism for the l(0) or l(1) norm regularization parameter is designed. With the selected regularization parameter, it is proved that the developed SRLS shows comparable or better performance than the regular RLS. Furthermore, the convergence of OSESN-SRLS is theoretically analyzed to guarantee its effectiveness. Simulation results illustrate that the proposed OSESN-SRLS always outperforms other existing ESNs in terms of estimation accuracy and network compactness. (C) 2019 Elsevier Ltd. All rights reserved.

关键词:

Regularization method Echo state networks Online sequential learning Time series prediction Sparse recursive least squares algorithm

作者机构:

  • [ 1 ] [Yang, Cuili]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Ahmad, Zohaib]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Nie, Kaizhe]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Lei]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

NEURAL NETWORKS

ISSN: 0893-6080

年份: 2019

卷: 118

页码: 32-42

7 . 8 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:147

JCR分区:1

被引次数:

WoS核心集被引频次: 33

SCOPUS被引频次: 41

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:100/3904412
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司