收录:
摘要:
The hot-deformed (HD) Nd-Fe-B magnets show heterogeneous microstructure composed of coarse and fine grain regions. It is significant to fully understand the influence of this complex microstructure on the magnetization reversal process which can give the guidance for the enhancement of the magnetic properties. In this paper, the heterogeneous microstructure of the (HD) Nd-Fe-B magnets were characterized from the morphology, size, macro-texture and micro-structure. In addition, the magnetization reversal process of the HD Nd-Fe-B magnets was systematically analyzed by magnetic measurement, in-situ domain evolution observation and micromagnetic simulation. The results indicate that the HD NdFe-B magnets mainly consist of fine grain regions (FGRs) and coarse grain regions (CGRs). The FGRs show plate-like grains with fine grain size and strong c-axis texture, while the CGRs show equiaxial grains with large grain size and weak c-axis texture. In particular, it is worth noting that the texture in homogeneity exists not only between FGRs and CGRs, but also inside both the FGRs and CGRs. The dominant coercivity mechanism of the HD Nd-Fe-B magnets is domain wall pinning. Also, the experimental analysis shows that the reverse domain is formed and expanded in the CGRs at low reverse applied field, while the reverse domain occurs in the FGRs at higher reverse applied field. The micromagnetic simulation results also confirm the above magnetization reversal process. In addition, micromagnetic simulation results also show that the orientation of the grains also affects the pinning strength, besides the grain size. (C) 2019 Chinese Society of Rare Earths. Published by Elsevier B.V. All rights reserved.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
JOURNAL OF RARE EARTHS
ISSN: 1002-0721
年份: 2019
期: 10
卷: 37
页码: 1088-1095
4 . 9 0 0
JCR@2022
ESI学科: CHEMISTRY;
ESI高被引阀值:166
JCR分区:2