• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Guo, Wenguang (Guo, Wenguang.) | Li, Desheng (Li, Desheng.) (学者:李德胜) | Ye, Lezhi (Ye, Lezhi.) | Gao, Zhiwei (Gao, Zhiwei.) | Zhang, Kai (Zhang, Kai.)

收录:

EI Scopus SCIE

摘要:

To overcome the large power consumption, the braking torque heat recession, and installation difficulties for trailers of eddy current retarder (ECR), a novel self-excited, liquid-cooled, and bridge integrated retarder (SLB-EMR) is proposed in this paper. The structure and work principle of the SLB-EMR are described particularly. Based on the magnetic equivalent circuit (MEC) method, an analytical model of the eddy current braking torque considering magnetic flux leakage and end effect is established. The power generation and braking performance of the SLB-EMR are predicted by the finite element analysis (FEA). We carried out tests for the eddy current braking torque, the heat-fade of braking torque, the no-load loss torque, and natural characteristics of the SLB-EMR respectively. The test results showed that the eddy current braking torque reached 2592 N center dot m at 1000 r/min. The braking torque declined by 15.5 % after the braking 12 min continuously. The analytical model of eddy current braking torque, and FEA model of the generator and eddy current brake were verified by the test. Compared with the ECR, the SLB-EMR had no-power consumption and low head-fade.

关键词:

Self-excited Eddy current braking Magnetic equivalent circuit (MEC) Liquid-cooled

作者机构:

  • [ 1 ] [Guo, Wenguang]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Desheng]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Ye, Lezhi]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Gao, Zhiwei]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Kai]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Ye, Lezhi]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY

ISSN: 1229-9138

年份: 2019

期: 5

卷: 20

页码: 1023-1032

1 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

JCR分区:4

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 10

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:616/4960266
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司