• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ge, Yun (Ge, Yun.) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才) | Sun, Yanfeng (Sun, Yanfeng.) (学者:孙艳丰)

收录:

EI Scopus

摘要:

This paper presents a novel matching method based on particle swarm optimization (PSO) algorithm for 3D face reconstruction. The new model-matching algorithm can make the reconstruction has faster convergent speed and better result than before. Having constructed the morphable model, PSO algorithm is proposed to tackle model matching problem. PSO algorithm is a swarm intelligence-based optimization algorithm which is independent of initial values and the gradient information of object function. In the course of optimization each individual has their own memory about the optimal position they have arrived and the information among individuals can be exchange with each other. This will be great helpful to improve precision and convergence speed of the algorithm. The Experimental results show that the proposed matching method has good performance on 3D face reconstruction. © 2009 Binary Information Press.

关键词:

Algorithms Cellular automata Convergence of numerical methods Face recognition Mathematical models Optical communication Particle swarm optimization (PSO) Repair Three dimensional

作者机构:

  • [ 1 ] [Ge, Yun]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing 100000, China
  • [ 2 ] [Yin, Baocai]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing 100000, China
  • [ 3 ] [Sun, Yanfeng]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing 100000, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Information and Computational Science

ISSN: 1548-7741

年份: 2009

期: 6

卷: 6

页码: 2215-2222

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:894/3621560
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司