• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Jian (He, Jian.) | Li, Hui (Li, Hui.) | Zhang, Yong (Zhang, Yong.) (学者:张勇) | Huang, Zhang-Qin (Huang, Zhang-Qin.) (学者:黄樟钦) | Hou, Yi-Bin (Hou, Yi-Bin.) (学者:侯义斌)

收录:

EI Scopus PKU CSCD

摘要:

According to the complexity of background, the weakness of light and the real-time requirement of identification in ambient intelligence (AmI). A face recognition mode based on Hidden Markov Model (namely, HMM) is designed, and a complex feature extraction algorithm based on vote weight algorithm which has advantages of gray transforms and 2D-DCT eigenvectors is proposed. Meanwhile, the difference algorithm is applied to analyze each frame of the picture captured by vidicon, and to position the region of the face in a real time. At last, a HMM face recognition system based on complex feature for AmI is developed. It is demonstrated experimentally that the system can recognize user's face well and truly, and a base for realizing the natural Human-Computer Interaction in ambient intelligence is provided.

关键词:

Ambient intelligence Artificial intelligence Face recognition Hidden Markov models Human computer interaction Identification (control systems) Television camera tubes

作者机构:

  • [ 1 ] [He, Jian]Institute of Embedded Software and System, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Li, Hui]Institute of Embedded Software and System, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Zhang, Yong]College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China
  • [ 4 ] [Huang, Zhang-Qin]Institute of Embedded Software and System, Beijing University of Technology, Beijing 100124, China
  • [ 5 ] [Hou, Yi-Bin]Institute of Embedded Software and System, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2009

期: SUPPL.

卷: 35

页码: 44-49

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:680/3616860
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司