• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Jin-Lian (Wang, Jin-Lian.) | Ruan, Xiao-Gang (Ruan, Xiao-Gang.) | Li, Xiao-Ming (Li, Xiao-Ming.)

收录:

EI Scopus PKU CSCD

摘要:

A leukemia molecular prediction model is constructed by using bioinformatics and machine learning methods with gene expression profile. Firstly, three methods including relief, classification information index and information gain index are used to select candidate feature gene set from the leukemia gene expression profile. Secondly, intersection of three candidate feature gene sets is generated, and then the best classification performance of intersection genes which is tested by SVM is selected as feature genes. Thirdly, the classification rule sets are extracted from these feature genes by using decision tree method. Finally, the leukemia molecular prediction model is constructed with these classification rules. The results show that the model is helpful to cancer clinical diagnosis and cancer gene biological experiments. Also, the two key genes (CD33, MPO) are biomarkers of leukemia clinically.

关键词:

Classification (of information) Decision trees Diagnosis Diseases Forecasting Gene expression Learning systems Predictive analytics Support vector machines Tumors

作者机构:

  • [ 1 ] [Wang, Jin-Lian]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Wang, Jin-Lian]College of Biology Medical Engineering, Capital Medical University, Beijing 100096, China
  • [ 3 ] [Ruan, Xiao-Gang]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 4 ] [Li, Xiao-Ming]Lang Fang Normal University, Langfang 102800, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2009

期: 3

卷: 35

页码: 301-308

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:71/3600979
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司