Indexed by:
Abstract:
Exploring the temporal relationship among events in patient electronic medical records (EMR) is an important problem in biomedical informatics and the results can reveal patients' impending disease conditions. In this paper, we investigate the problem of mining patterns from a sequence of point events, i.e., we only have the information on when the event happens but no duration or numerical value available. We propose a whole pipeline, including event preprocessing, pattern mining, and outcome analysis to mine the patterns and evaluate their effectiveness and discriminative power. Finally, we treat those mined patterns as additional features and evaluate them in a predictive modeling task for the early detection of congestive heart failure. On a real-world EMR data warehouse, we found that by adding those sequential pattern features, the prediction performance could be significantly improved approximately 0.1.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
ISSN: 2168-2194
Year: 2019
Issue: 5
Volume: 23
Page: 2138-2147
7 . 7 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:147
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 9
SCOPUS Cited Count: 12
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0