• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Tan, Xiyue (Tan, Xiyue.) | Xu, Xi (Xu, Xi.) | Wang, Fei (Wang, Fei.)

收录:

EI Scopus SCIE

摘要:

Exploring the temporal relationship among events in patient electronic medical records (EMR) is an important problem in biomedical informatics and the results can reveal patients' impending disease conditions. In this paper, we investigate the problem of mining patterns from a sequence of point events, i.e., we only have the information on when the event happens but no duration or numerical value available. We propose a whole pipeline, including event preprocessing, pattern mining, and outcome analysis to mine the patterns and evaluate their effectiveness and discriminative power. Finally, we treat those mined patterns as additional features and evaluate them in a predictive modeling task for the early detection of congestive heart failure. On a real-world EMR data warehouse, we found that by adding those sequential pattern features, the prediction performance could be significantly improved approximately 0.1.

关键词:

EMR Predictive modeling event pattern discovery

作者机构:

  • [ 1 ] [Li, Jianqiang]Beijing Univ Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Tan, Xiyue]Beijing Univ Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Xu, Xi]Beijing Univ Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Jianqiang]Beijing Engn Res Ctr IoT Software & Syst, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Fei]Cornell Univ, Dept Healthcare Policy & Res, Ithaca, NY 14853 USA

通讯作者信息:

  • 李建强

    [Li, Jianqiang]Beijing Univ Technol, Sch Software Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

ISSN: 2168-2194

年份: 2019

期: 5

卷: 23

页码: 2138-2147

7 . 7 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:147

JCR分区:1

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:1227/4282556
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司