• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xie, Dong-Fan (Xie, Dong-Fan.) | Fang, Zhe-Zhe (Fang, Zhe-Zhe.) | Jia, Bin (Jia, Bin.) | He, Zhengbing (He, Zhengbing.)

收录:

SSCI EI Scopus SCIE

摘要:

Lane-changing (LC), which is one of the basic driving behavior, largely impacts on traffic efficiency and safety. Modeling an LC process is challenging due to the complexity and uncertainty of driving behavior. To address this issue, this paper proposes a data-driven LC model based on deep learning models. Deep belief network (DBN) and long short-term memory (LSTM) neural network are employed to model the LC process that is composed of LC decisions (LCD) and LC implementation (LCI). The empirical LC data provided by Next Generation Simulation project (NGSIM) is utilized to train and test the proposed DBN-based LCD model and LSTM-based LCI model. The results indicate that the proposed data-driven model is able to accurately predict the LC process of a vehicle. The sensitivity analysis shows that the most important factor associated with LCD is the relative position of the preceding vehicle in the target lane. This may be the first work that comprehensively models LC using deep learning approaches.

关键词:

Vehicle trajectory Driving behavior Deep belief network Long short-term memory Traffic flow

作者机构:

  • [ 1 ] [Xie, Dong-Fan]Beijing Jiaotong Univ, Inst Syst Sci, Beijing, Peoples R China
  • [ 2 ] [Fang, Zhe-Zhe]Beijing Jiaotong Univ, Inst Syst Sci, Beijing, Peoples R China
  • [ 3 ] [Jia, Bin]Beijing Jiaotong Univ, Inst Syst Sci, Beijing, Peoples R China
  • [ 4 ] [Xie, Dong-Fan]Beijing Jiaotong Univ, Key Lab Transport Ind Big Data Applicat Technol C, Beijing, Peoples R China
  • [ 5 ] [He, Zhengbing]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Traff Engn, Beijing, Peoples R China

通讯作者信息:

  • [He, Zhengbing]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Traff Engn, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES

ISSN: 0968-090X

年份: 2019

卷: 106

页码: 41-60

8 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

被引次数:

WoS核心集被引频次: 201

SCOPUS被引频次: 241

ESI高被引论文在榜: 10 展开所有

  • 2024-11
  • 2024-11
  • 2024-9
  • 2024-9
  • 2024-7
  • 2024-5
  • 2024-3
  • 2024-1
  • 2023-11
  • 2023-5

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:497/3912495
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司