• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Jiangeng (Li, Jiangeng.) | Li, Ping (Li, Ping.) | Ruan, Xiaogang (Ruan, Xiaogang.)

收录:

EI Scopus

摘要:

Gastric cancer is one of the commonest malignant tumors and is one of leading causes of cancer death in the world. Using gene expression data to discriminate tumor from the normal ones is a powerful method and will have a strong impact on disease treatment and diagnosis. In the paper, we present a hybrid feature selection method and apply it to a 29 gastric cancer dataset. The hybrid method contains two steps. First, we rank the features using Bhattacharyya distance, then we delete redundancy based an adaptive sequential floating forward selection (adaptive SFFS). In the experiment, we employ the support vector machine (SVM) to recognize the gene data either normal or tumor. 10 related genes have been selected. The accuracy of classification shows the importance of the 10 genes to the gastric cancer, and certainly shows the usefulness and effectiveness of our hybrid method. © 2008 Binary Information Press.

关键词:

Tumors Diseases Diagnosis Feature extraction Support vector machines Genes Gene expression

作者机构:

  • [ 1 ] [Li, Jiangeng]Academy of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Li, Ping]Academy of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Ruan, Xiaogang]Academy of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Computational Information Systems

ISSN: 1553-9105

年份: 2008

期: 6

卷: 4

页码: 2607-2614

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:2593/4247790
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司