• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gao, Xuejin (Gao, Xuejin.) (学者:高学金) | Wang, Pu (Wang, Pu.) | Zhang, Yating (Zhang, Yating.) | Zhang, Huiqing (Zhang, Huiqing.) | Qi, Yongsheng (Qi, Yongsheng.) | Guan, Wei (Guan, Wei.)

收录:

EI Scopus PKU CSCD

摘要:

To increase fermentation unit, the strategy of optimization control that combines the support vector machine (SVM) with genetic algorithm based on real coding (RGA) is proposed. To solve the coupling of fermentation parameters, the idea of pattern is also introduced. SVM establishes the prediction model for the microbial process, and RGA taking the model as fitness function calculates the optimal control pattern. The results show that the penicillin titer of fermentation process optimized is increased by 22.88% compared with that of fermentation process not optimized.

关键词:

Fermentation Predictive analytics Genetic algorithms Process control Support vector machines Models Vector control (Electric machinery)

作者机构:

  • [ 1 ] [Gao, Xuejin]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Wang, Pu]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Zhang, Yating]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 4 ] [Zhang, Huiqing]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 5 ] [Qi, Yongsheng]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 6 ] [Guan, Wei]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Chemical Industry and Engineering (China)

ISSN: 0438-1157

年份: 2008

期: 6

卷: 59

页码: 1462-1469

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:311/3895001
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司