• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tao Yuxin (Tao Yuxin.) | Yan Hairong (Yan Hairong.) | Gao Hang (Gao Hang.) | Sun Yuying (Sun Yuying.) | Li Gang (Li Gang.) (学者:李港)

收录:

EI Scopus SCIE

摘要:

In conditioning air load prediction model based on SVR model, the Simulated Annealing (SA) has been provided in order to surmount the disadvantage that the SVR model selects learning parameters depending on experience. The Modified Simulated Annealing (MSA) has been proposed to optimize the SVR prediction model, in which the annealing plan and disturbance range has been improved. Case researches in the paper show that MSA algorithm is of strong global optimization capability, good robustness and short calculation consumption. Compared with SA-SVR model and the VFSA-SVR model, MSA-SVR air conditioning load prediction model, the results show SVR model parameters obtained through MSA optimization can effectively improve the predication accuracy and stability of the air conditioning load prediction.

关键词:

Support vector machine Regression analysis Parameter optimization Load forecasting Error correction

作者机构:

  • [ 1 ] [Tao Yuxin]Beijing Univ Technol, Sch Software & Software Engn, Beijing, Peoples R China
  • [ 2 ] [Gao Hang]Beijing Univ Technol, Sch Software & Software Engn, Beijing, Peoples R China
  • [ 3 ] [Yan Hairong]Beijing Univ Technol, Beijing, Peoples R China
  • [ 4 ] [Sun Yuying]Beijing Univ Technol, Beijing, Peoples R China
  • [ 5 ] [Li Gang]Deakin Univ, Burwood, Vic, Australia

通讯作者信息:

  • [Tao Yuxin]Beijing Univ Technol, Sch Software & Software Engn, Beijing, Peoples R China;;[Yan Hairong]Beijing Univ Technol, Beijing, Peoples R China;;[Sun Yuying]Beijing Univ Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION

ISSN: 2467-964X

年份: 2019

卷: 15

页码: 247-251

1 5 . 7 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 29

SCOPUS被引频次: 40

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:322/3908010
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司