• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Pang, Junbiao (Pang, Junbiao.) (学者:庞俊彪) | Huang, Jing (Huang, Jing.) | Du, Yong (Du, Yong.) | Yu, Haitao (Yu, Haitao.) | Huang, Qingming (Huang, Qingming.) (学者:黄庆明) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

EI Scopus SCIE

摘要:

Bus arrival time prediction intends to improve the level of the services provided by transportation agencies. Intuitively, many stochastic factors affect the predictability of the arrival time, e.g., weather and local events. Moreover, the arrival time prediction for a current station is closely correlated with that of multiple passed stations. Motivated by the observations above, this paper proposes to exploit the long-range dependencies among the multiple time steps for bus arrival prediction via recurrent neural network (RNN). Concretely, RNN with long short-term memory block is used to "correct" the prediction for a station by the correlated multiple passed stations. During the correlation among multiple stations, one-hot coding is introduced to fuse heterogeneous information into a unified vector space. Therefore, the proposed framework leverages the dynamic measurements (i.e., historical trajectory data) and the static observations (i.e., statistics of the infrastructure) for bus arrival time prediction. In order to fairly compare with the state-of-the-art methods, to the best of our knowledge, we have released the largest data set for this task. The experimental results demonstrate the superior performances of our approach on this data set.

关键词:

multi-step-ahead prediction long-range dependencies recurrent neural network heterogenous measurement Bus arriving time prediction

作者机构:

  • [ 1 ] [Pang, Junbiao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Huang, Jing]IBM China Investment Co Ltd, Beijing 10085, Peoples R China
  • [ 3 ] [Du, Yong]Beijing Transportat Informat Ctr, Beijing 100161, Peoples R China
  • [ 4 ] [Yu, Haitao]Beijing Transportat Informat Ctr, Beijing 100161, Peoples R China
  • [ 5 ] [Huang, Qingming]Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China
  • [ 6 ] [Huang, Qingming]Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
  • [ 7 ] [Yin, Baocai]Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Peoples R China
  • [ 8 ] [Yin, Baocai]Beijing Univ Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • 庞俊彪

    [Pang, Junbiao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Yu, Haitao]Beijing Transportat Informat Ctr, Beijing 100161, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

ISSN: 1524-9050

年份: 2019

期: 9

卷: 20

页码: 3283-3293

8 . 5 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

JCR分区:1

被引次数:

WoS核心集被引频次: 49

SCOPUS被引频次: 59

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:1394/4271232
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司