• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Guo, Hang (Guo, Hang.) (学者:郭航) | Guo, Qing (Guo, Qing.) | Ye, Fang (Ye, Fang.) | Ma, Chong Fang (Ma, Chong Fang.) | Zhu, Xun (Zhu, Xun.) | Liao, Qiang (Liao, Qiang.)

收录:

EI Scopus SCIE

摘要:

A unitized regenerative fuel cell is a typical gas liquid two-phase system that consumes oxygen and hydrogen in a fuel cell mode and liquid water in an electrolytic cell mode. Liquid water removal is crucial for a successful cell start-up after the electrolytic cell mode ends. However, investigations on two-phase transfer mechanisms for liquid water removal are limited during mode switching. To fill this research gap, a three-dimensional two-phase full-cell model is developed to describe charges, gas mixtures and liquid water transfer corresponding to operational modes of electrolytic cell, gas purging and fuel cell. The cell is assumed to being in the isothermal state. Numerical model is analyzed by using COMSOL Multiphysics 5.3a software. Furthermore, experimental and simulated results are compared to validate the proposed model. Results show that more than 84.0% of pore volume is occupied with liquid water on porous layers in an electrolytic cell mode. Although pre-switching for water removal can decrease the volume fraction of liquid water within the porous layers from 0.88 to 0.50 in a short time, more time is required for liquid water being carried away under a low level of water flooding. Purging result presents diverse influences on start-up performance in a fuel cell mode. Liquid water distribution, which is similar to that in a fuel cell mode, formed in a purging mode is encouraged for promoting a quick and stable start-up in a fuel cell mode.

关键词:

Electrolytic cell Fuel cell Gas purging Liquid water Two-phase Unitized regenerative fuel cell

作者机构:

  • [ 1 ] [Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Qing]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 3 ] [Ye, Fang]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 4 ] [Ma, Chong Fang]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 5 ] [Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 6 ] [Guo, Qing]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 7 ] [Ye, Fang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 8 ] [Ma, Chong Fang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 9 ] [Zhu, Xun]Chongqing Univ, Sch Energy & Power Engn, Inst Engn Thermophys, Chongqing 400030, Peoples R China
  • [ 10 ] [Liao, Qiang]Chongqing Univ, Sch Energy & Power Engn, Inst Engn Thermophys, Chongqing 400030, Peoples R China

通讯作者信息:

  • 郭航

    [Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China;;[Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENERGY CONVERSION AND MANAGEMENT

ISSN: 0196-8904

年份: 2019

卷: 195

页码: 989-1003

1 0 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:52

JCR分区:1

被引次数:

WoS核心集被引频次: 42

SCOPUS被引频次: 42

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:249/3765612
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司