收录:
摘要:
Principal component analysis (PCA) has been applied widely in pattern recognition. Based on the nonlinear PCA algorithm and subspace pattern recognition method, a nonlinear PCA neural network model of signal reconstruction has been proposed in this paper. The method has been used in handwritten digits and characters recognition, and a comparison with BP neural network based classifiers has been made. Some satisfactory results have been obtained. The experiment results show that the average correct identification rate of our method is up to 94.74% for the handwritten digits, and 91.03% for the handwritten characters.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
Journal of Beijing University of Technology
ISSN: 0254-0037
年份: 2007
期: 9
卷: 33
页码: 915-919
归属院系: