• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yin, Bao-Cai (Yin, Bao-Cai.) (学者:尹宝才) | Zhang, Zhuang (Zhang, Zhuang.) | Sun, Yan-Feng (Sun, Yan-Feng.) (学者:孙艳丰) | Wang, Cheng-Zhang (Wang, Cheng-Zhang.)

收录:

EI Scopus PKU CSCD

摘要:

A novel method to pose variant face recognition that combines two recent advances of component-based face recognition and 3D morphable model is presented. 3D components are extracted as the feature of face recognition. Because of the shape information, it reduces the effect of pose to face recognition. For classification, we combine the local feature and global feature of face and the whole face are used as input to the final classifier, where each component is verified by its weight based on its recognition rate in final classifier. Experimental results show that the method is robust to pose invariant face recognition with only one image of each person in the gallery.

关键词:

Classification (of information) Classifiers Face recognition Feature extraction Image processing Mathematical models Reconstruction (structural) Robustness (control systems) Textures Three dimensional

作者机构:

  • [ 1 ] [Yin, Bao-Cai]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing 100022, China
  • [ 2 ] [Zhang, Zhuang]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing 100022, China
  • [ 3 ] [Sun, Yan-Feng]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing 100022, China
  • [ 4 ] [Wang, Cheng-Zhang]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing 100022, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2007

期: 3

卷: 33

页码: 320-325

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:929/3711853
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司