• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Luo, Zhi-Yong (Luo, Zhi-Yong.) | Song, Rou (Song, Rou.)

收录:

EI Scopus PKU CSCD

摘要:

To improve the performance of new word identification in Chinese word segment, the authors propose an adaptive method for Chinese new word identification based on multi-feature method for offline corpus processing, in which many features, including context-entropy, likelihood ratios, frequency ratio against background corpus and boundary-verification with basic segmentation are introduced to evaluate the candidate words. And all of the features are integrated into an adaptive SVM classifier. Candidate new words are extracted efficiently on PAT-Array with much less space overhead and arbitrary n-gram words can be identified by the method. The results show that the method can run fast upon new word identification and save much memory.

关键词:

Natural language processing systems Algorithms Computer applications Word processing Computational linguistics

作者机构:

  • [ 1 ] [Luo, Zhi-Yong]College of Computer Science, Beijing University of Technology, Beijing 100022, China
  • [ 2 ] [Luo, Zhi-Yong]Center for Language Information Processing, Beijing Language and Culture University, Beijing 100083, China
  • [ 3 ] [Song, Rou]Center for Language Information Processing, Beijing Language and Culture University, Beijing 100083, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2007

期: 7

卷: 33

页码: 718-725

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:878/3907056
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司