• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Xinxin (Zhang, Xinxin.) | Zhang, Yin (Zhang, Yin.) | Cao, Min (Cao, Min.) | Wang, Jingfu (Wang, Jingfu.) (学者:王景甫) | Wu, Yuting (Wu, Yuting.) (学者:吴玉庭) | Ma, Chongfang (Ma, Chongfang.)

收录:

EI Scopus SCIE

摘要:

The organic Rankine cycle (ORC) is a popular technology used in waste heat recovery and medium-low-temperature heat utilization. Working fluid plays a very important role in ORC. The selection of working fluid can greatly affect the efficiency, the operation condition, the impact on the environment, and the economic feasibility of ORC. The expander is a key device in ORC. As a novel expander, single-screw expanders have been becoming a research focus in the above two areas because of their many good characteristics. One of the advantages of single-screw configurations is that they can conduct a vapor-liquid two-phase expansion. Therefore, in order to give full play to this advantage, a working fluid selection for ORC using a single-screw expander was conducted in this paper. Three indicators, namely, net work output, thermal efficiency, and heat exchange load of condenser, were used to analyze the performance of an ORC system. Through calculation and analysis, it can be seen that an ORC system that uses a single-screw expander and undergoes a vapor-liquid two-phase expansion is able to obtain a higher thermal efficiency, higher net work output, and a smaller heat exchange load of the condenser. Regardless of whether isentropic efficiency of the expander is considered or not, cis-butene may be the best candidate for working in subcritical cycles. HFO working fluids are more suitable for working in transcritical cycles, and HFO-1234ze(E) may be the best.

关键词:

cis-butene heat exchange load of condenser HFO-1234ze(E) net work output single-screw expander thermal efficiency vapor-liquid two-phase expansion

作者机构:

  • [ 1 ] [Zhang, Xinxin]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Yin]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 3 ] [Cao, Min]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Jingfu]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 5 ] [Wu, Yuting]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 6 ] [Ma, Chongfang]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 7 ] [Zhang, Xinxin]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 8 ] [Zhang, Yin]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 9 ] [Cao, Min]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 10 ] [Wang, Jingfu]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 11 ] [Wu, Yuting]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 12 ] [Ma, Chongfang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhang, Xinxin]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China;;[Zhang, Xinxin]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENERGIES

年份: 2019

期: 16

卷: 12

3 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:52

被引次数:

WoS核心集被引频次: 26

SCOPUS被引频次: 24

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:2763/2974132
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司