• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cui, Tao (Cui, Tao.) | He, Haoxiang (He, Haoxiang.) (学者:何浩祥) | Yan, Weiming (Yan, Weiming.) (学者:闫维明)

收录:

EI Scopus SCIE PubMed

摘要:

In order to establish accurate compressive constitutive model of Hybrid Fiber-Reinforced Concrete (HFRC), 10 groups of HFRC specimens containing polyvinyl alcohol (PVA), polypropylene (PP), and steel fibers are designed and compressive testing is conducted. On the basis of summarizing and comparing the existing research, accuracy of various stress-strain constitutive model is compared and the method of calculating fitting parameters is put forward, peak stress, peak strain, and elastic modulus of specimens with different fiber proportion are analyzed, the calculation expressions of each fitting parameter are given. The results show that, under the condition that the volume of the hybrid fiber is 2% with the proportion of the steel fiber increase, the strength of the specimen increases, the peak strain decreases slightly, and the elastic modulus increases significantly. In specimens mixed with PVA-PP hybrid fiber, with the increase of PVA fiber proportion, the peak stress and elastic modulus of the material are improved, and the peak strain are decreased. The existing stress-strain expressions agree well with the tests. Accuracy of exponential model proposed in this paper is the highest, which can be applied in engineering and nonlinear finite element analysis of components.

关键词:

constitutive model hybrid fiber concrete elasticity modulus SIR model

作者机构:

  • [ 1 ] [Cui, Tao]Beijing Univ Technol, Beijing Key Lab Earthquake Engn & Struct Retrofit, Beijing 100124, Peoples R China
  • [ 2 ] [He, Haoxiang]Beijing Univ Technol, Beijing Key Lab Earthquake Engn & Struct Retrofit, Beijing 100124, Peoples R China
  • [ 3 ] [Yan, Weiming]Beijing Univ Technol, Beijing Key Lab Earthquake Engn & Struct Retrofit, Beijing 100124, Peoples R China

通讯作者信息:

  • 何浩祥

    [He, Haoxiang]Beijing Univ Technol, Beijing Key Lab Earthquake Engn & Struct Retrofit, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

MATERIALS

年份: 2019

期: 15

卷: 12

3 . 4 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:211

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:653/4759653
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司