收录:
摘要:
A new method to voiced/unvoiced/silence of speech classification using Support Vector Machine (SVM) is proposed. This classifier can effectively classify speech frames into voiced frame, unvoiced frame and silence frame under various levels of signal noise ratio. Firstly, in high SNR, the VU/S classification is done by using the four difference characteristic parameters used in G.729B VAD as SVM's input features. The comparison of experiment results shows that the proposed method outperforms other traditional methods (G.729B VAD and BP network), which shows the SVM's classification method is available. And the performance of SVM for different kernel functions in the experiment was analyzed and discussed as well. Secondly, the paper also discusses the extraction of the statistical features which is immune to the background noise and the adaptive estimation method for the time-varying background noise in low SNR, which are analyzed by applying a statistical model. Lastly, the comparison experiment results in various noise environments under varying levels of SNR are given. According to the simulation results, the proposed method shows significantly better classification performances than the other traditional methods in middle and low SNR cases.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
Acta Electronica Sinica
ISSN: 0372-2112
年份: 2006
期: 4
卷: 34
页码: 605-611
归属院系: