• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Sun, Yan-Feng (Sun, Yan-Feng.) (学者:孙艳丰) | Liang, Yong-Tao (Liang, Yong-Tao.) | Su, Shi-Qian (Su, Shi-Qian.) | Yin, Bao-Cai (Yin, Bao-Cai.) (学者:尹宝才)

收录:

EI Scopus PKU CSCD

摘要:

To accelerate the speed of face detection and get low false alarm rate, an approach of knowledge-based face detection is proposed. It integrates the skin-color model and the gravity-center template. In the process of rough detection, the skin-color model is used to segment the face like regions from any input image. The face-like regions are further checked out by matching the gravity-center template. As the physical structure of human face being taken into careful consideration, a dynamic three subsections distribution model of face, is proposed and used to establish a face knowledge base by analyzing large numbers of face images under different conditions. All the face-like regions are verified if they are genuine human faces based on the knowledge base of faces. The experimental results show that this approach is robust for human face images under complex background, different sizes and certain degree of rotation.

关键词:

Skin Rotation Face recognition Image segmentation Color

作者机构:

  • [ 1 ] [Sun, Yan-Feng]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science and Technology, Beijing University of Technology, Beijing 100022, China
  • [ 2 ] [Liang, Yong-Tao]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science and Technology, Beijing University of Technology, Beijing 100022, China
  • [ 3 ] [Su, Shi-Qian]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science and Technology, Beijing University of Technology, Beijing 100022, China
  • [ 4 ] [Yin, Bao-Cai]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science and Technology, Beijing University of Technology, Beijing 100022, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2006

期: 5

卷: 32

页码: 467-472

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:878/3913231
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司