• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Wen-Bin (Li, Wen-Bin.) | Liu, Chun-Nian (Liu, Chun-Nian.) | Chen, Yi-Ying (Chen, Yi-Ying.)

收录:

EI Scopus PKU CSCD

摘要:

In order to improve the training speed of classifiers without losing their accuracy, three classifying algorithms based on information gain of features are provided in this work. They are IG-C1, IG-C2 and IG-C, which classifies unlabeled text according to features weight generated in feature selection phase. All these approaches have two characteristics: lower time complexity and simpler implementation. The performance comparison between these algorithms and Naive Bayes, Vector Space Model using retuers 21578 and 20 newsgroup data sets, shows that IG-C algorithm is best one.

关键词:

Classification (of information) Entropy Feature extraction Text processing

作者机构:

  • [ 1 ] [Li, Wen-Bin]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science and Technology, Beijing University of Technology, Beijing 100022, China
  • [ 2 ] [Li, Wen-Bin]School of Information Engineer, Shijiazhuang University of Economics, Shijizahuang 050031, China
  • [ 3 ] [Liu, Chun-Nian]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science and Technology, Beijing University of Technology, Beijing 100022, China
  • [ 4 ] [Chen, Yi-Ying]School of Information Engineer, Shijiazhuang University of Economics, Shijizahuang 050031, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2006

期: 5

卷: 32

页码: 456-460

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:245/3608599
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司