• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Du, Xiu-Li (Du, Xiu-Li.) (学者:杜修力) | Han, Ling (Han, Ling.) | Jiang, Li-Ping (Jiang, Li-Ping.)

收录:

EI Scopus PKU CSCD

摘要:

It is necessary to obtain corresponding solutions to evaluating the fitness of all individuals of every generation of the population and to analyze the solutions by using Genetic Algorithm. When the scale of problem is large, the calculation of genetic algorithm will be so enormous that it ean not be used in practice. However, a new method called empirical genetic algorithm is proposed in the paper. It decrease the number to analyze the solution and increase the efficiency of the genetic algorithm, in which the fitness of most individuals of every generation of the population are estimated by the empirical Neural Network. The calculation results from six classical test functions show that the method is efficient.

关键词:

Global optimization Neural networks Genetic algorithms

作者机构:

  • [ 1 ] [Du, Xiu-Li]Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing 100022, China
  • [ 2 ] [Han, Ling]Beijing Institute of Architectural Design, Beijing 100045, China
  • [ 3 ] [Jiang, Li-Ping]Shandong Provincial Academy of Building Research, Jinan 250031, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2006

期: 11

卷: 32

页码: 992-995

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:676/3915516
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司