• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Haili (Zhang, Haili.) | Wang, Pu (Wang, Pu.) | Gao, Xuejin (Gao, Xuejin.) (学者:高学金) | Qi, Yongsheng (Qi, Yongsheng.) | Gao, Huihui (Gao, Huihui.)

收录:

Scopus SCIE

摘要:

Fault detection and diagnosis (FDD) have been major concerns in abnormal event management of chemical processes for decades. Frequency-wise variations in chemical processes are not considered in most traditional methods, which affects the monitoring performance. An amplitude-frequency images-based convolutional neural network (ConvNet) is proposed for FDD in chemical processes. The fast Fourier transform (FFT) is first performed on data slice collected within a period to extract both amplitude-wise dynamics and frequency-wise variations, with the results in images. Then, the amplitude-frequency images are fed into ConvNet for FDD. ConvNet is applied as a binary classifier, in which each classifier corresponds to only one fault. Thus, an expandable framework is provided to incorporate a new fault. The performance of the proposed amplitude-frequency images-based ConvNet in FDD is demonstrated in a numerical case and the Tennessee Eastman process.

关键词:

amplitude-frequency image chemical process convolutional neural network fast Fourier transform fault detection and diagnosis

作者机构:

  • [ 1 ] [Zhang, Haili]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Pu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Gao, Xuejin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Gao, Huihui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Haili]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 6 ] [Wang, Pu]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 7 ] [Gao, Xuejin]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 8 ] [Gao, Huihui]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 9 ] [Zhang, Haili]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 10 ] [Wang, Pu]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 11 ] [Gao, Xuejin]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 12 ] [Gao, Huihui]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 13 ] [Zhang, Haili]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 14 ] [Wang, Pu]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 15 ] [Gao, Xuejin]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 16 ] [Gao, Huihui]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 17 ] [Qi, Yongsheng]Inner Mongolia Univ Technol, Sch Elect Power, Hohhot 010051, Peoples R China

通讯作者信息:

  • 高学金

    [Gao, Xuejin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF CHEMOMETRICS

ISSN: 0886-9383

年份: 2019

期: 9

卷: 33

2 . 4 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:66

JCR分区:2

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:62/3277525
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司