• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Quan-Jin (Liu, Quan-Jin.) | Li, Ying-Xin (Li, Ying-Xin.) | Ruan, Xiao-Gang (Ruan, Xiao-Gang.)

收录:

EI Scopus PKU CSCD

摘要:

In order to discover informative gene of cancer, a view to regard different tumors as a single class was presented in this paper. The purpose is to find informative genes that can classify tumor tissues from normal tissues, which can be used for gene expression research of biomedicine and biotechnology. We used the correlation coefficient for each gene as the criterion for classification, and remove the noise-genes with smaller correlation coefficient values. A statistical method called 'nearest shrunken centroids' is applied in order to find informative gene with good ability of classifying and clustering the samples corresponding to their tissues types. We correctly clustered 87.7% samples and classify the testing samples with an accuracy of 81.1% using the informative genes. The results show that both the performance of clustering and classifying are improved after the feature selection.

关键词:

Algorithms Classification (of information) Data processing Genes Information analysis Statistical methods Tumors

作者机构:

  • [ 1 ] [Liu, Quan-Jin]Department of Physics, Anqing Normal College, Anqing 246011, China
  • [ 2 ] [Li, Ying-Xin]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100022, China
  • [ 3 ] [Ruan, Xiao-Gang]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100022, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2005

期: 2

卷: 31

页码: 122-125

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:117/3601882
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司