• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ju, Fujiao (Ju, Fujiao.) | Sun, Yanfeng (Sun, Yanfeng.) (学者:孙艳丰) | Gao, Junbin (Gao, Junbin.) | Antolovich, Michael (Antolovich, Michael.) | Dong, Junliang (Dong, Junliang.) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

EI Scopus SCIE

摘要:

Restricted Boltzmann machine (RBM) is a famous model for feature extraction and can be used as an initializer for neural networks. When applying the classic RBM to multidimensional data such as 2D/3D tensors, one needs to vectorize such as high-order data. Vectorizing will result in dimensional disaster and valuable spatial information loss. As RBM is a model with fully connected layers, it requires a large amount of memory. Therefore, it is difficult to use RBM with high-order data on low-end devices. In this article, to utilize classic RBM on tensorial data directly, we propose a new tensorial RBM model parameterized by the tensor train format (TTRBM). In this model, both visible and hidden variables are in tensorial form, which are connected by a parameter matrix in tensor train format. The biggest advantage of the proposed model is that TTRBM can obtain comparable performance compared with the classic RBM with much fewer model parameters and faster training process. To demonstrate the advantages of TTRBM, we conduct three real-world applications, face reconstruction, handwritten digit recognition, and image super-resolution in the experiments.

关键词:

tensor train format restricted Boltzmann machine Tensor

作者机构:

  • [ 1 ] [Ju, Fujiao]Beijing Univ Technol, Fac Informat Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Sun, Yanfeng]Beijing Univ Technol, Fac Informat Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Gao, Junbin]Univ Sydney, Business Sch, Discipline Business Analyt, Sydney, NSW 2006, Australia
  • [ 4 ] [Antolovich, Michael]Charles Sturt Univ, Sch Comp & Math, Bathurst, NSW 2795, Australia
  • [ 5 ] [Dong, Junliang]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 6 ] [Yin, Baocai]Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Peoples R China

通讯作者信息:

  • 孙艳丰

    [Sun, Yanfeng]Beijing Univ Technol, Fac Informat Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA

ISSN: 1556-4681

年份: 2019

期: 3

卷: 13

3 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:147

JCR分区:2

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:187/4303633
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司