• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yan, Jianzhuo (Yan, Jianzhuo.) | Kuai, Hongzhi (Kuai, Hongzhi.) | Chen, Jianhui (Chen, Jianhui.) | Zhong, Ning (Zhong, Ning.)

收录:

EI Scopus SCIE

摘要:

Emotion recognition is a highly noteworthy and challenging work in both cognitive science and affective computing. Currently, neurobiology studies have revealed the partially synchronous oscillating phenomenon within brain, which needs to be analyzed from oscillatory synchronization. This combination of oscillations and synchronism is worthy of further exploration to achieve inspiring learning of the emotion recognition models. In this paper, we propose a novel approach of valence and arousal-based emotion recognition using EEG data. First, we construct the emotional oscillatory brain network (EOBN) inspired by the partially synchronous oscillating phenomenon for emotional valence and arousal. And then, a coefficient of variation and Welch's t-test based feature selection method is used to identify the core pattern (cEOBN) within EOBN for different emotional dimensions. Finally, an emotional recognition model (ERM) is built by combining cEOBN-inspired information obtained in the above process and different classifiers. The proposed approach can combine oscillation and synchronization characteristics of multi-channel EEG signals for recognizing different emotional states under the valence and arousal dimensions. The cEOBN-based inspired information can effectively reduce the dimensionality of the data. The experimental results show that the previous method can be used to detect affective state at a reasonable level of accuracy.

关键词:

synchronization emotion recognition emotional oscillatory brain network oscillation Electroencephalogram

作者机构:

  • [ 1 ] [Yan, Jianzhuo]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Kuai, Hongzhi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Chen, Jianhui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Kuai, Hongzhi]Minist Educ PRC Engn Res, Ctr Digital Community, Beijing 100022, Peoples R China
  • [ 5 ] [Yan, Jianzhuo]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Kuai, Hongzhi]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 7 ] [Chen, Jianhui]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 8 ] [Zhong, Ning]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 9 ] [Chen, Jianhui]Beijing Int Collaborat Base Brain, Informat & Wisdom Serv, Beijing 100124, Peoples R China
  • [ 10 ] [Zhong, Ning]Beijing Int Collaborat Base Brain, Informat & Wisdom Serv, Beijing 100124, Peoples R China
  • [ 11 ] [Chen, Jianhui]Beijing Univ Technol, Int WIC Inst, Beijing 100124, Peoples R China
  • [ 12 ] [Zhong, Ning]Beijing Univ Technol, Int WIC Inst, Beijing 100124, Peoples R China
  • [ 13 ] [Zhong, Ning]Maebashi Inst Technol, Dept Life Sci & Informat, Knowledge Informat Syst Lab, Maebashi, Gunma 3710816, Japan

通讯作者信息:

  • [Yan, Jianzhuo]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Yan, Jianzhuo]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING

ISSN: 0219-6220

年份: 2019

期: 4

卷: 18

页码: 1359-1378

4 . 9 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:147

JCR分区:3

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:202/3903539
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司