• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Yinfeng (Liu, Yinfeng.) | Zhou, Yaoyao (Zhou, Yaoyao.) | Du, Jianping (Du, Jianping.) | Liu, Dong (Liu, Dong.) | Ren, Jie (Ren, Jie.) | Chen, Yuhan (Chen, Yuhan.) | Zhang, Fan (Zhang, Fan.) | Chen, Jinpeng (Chen, Jinpeng.)

收录:

EI

摘要:

Radiosonde has always played a very important role in meteorological detection, so how to properly schedule the radiosonde to reach the sensitive region is an urgent problem. In this paper, deep learning is applied to this field for the first time to provide a basis for the reasonable scheduling of radiosonde by predicting the motion trajectory of radiosonde. Based on the radiosonde data from February 2019 to October 2019, this paper uses the radiosonde trajectory prediction model based on GRU (RTP-GRU) to predict the radiosonde trajectory in a period of time in the future. The experimental results show that this model has better performance than baseline methods such as RNN and LSTM. The results show that it is feasible and valuable to explore this field with deep learning method. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

关键词:

Computer networks Deep learning Forecasting Learning systems Long short-term memory Predictive analytics Radiosondes Trajectories

作者机构:

  • [ 1 ] [Liu, Yinfeng]Beijing HY Orient Detection Technology Co., Ltd., Beijing; 102206, China
  • [ 2 ] [Zhou, Yaoyao]Beijing University of Posts and Telecommunications, Beijing; 100786, China
  • [ 3 ] [Du, Jianping]Beijing HY Orient Detection Technology Co., Ltd., Beijing; 102206, China
  • [ 4 ] [Liu, Dong]Beijing HY Orient Detection Technology Co., Ltd., Beijing; 102206, China
  • [ 5 ] [Ren, Jie]Beijing HY Orient Detection Technology Co., Ltd., Beijing; 102206, China
  • [ 6 ] [Chen, Yuhan]Beijing University of Technology, Beijing; 100083, China
  • [ 7 ] [Zhang, Fan]Beijing University of Posts and Telecommunications, Beijing; 100786, China
  • [ 8 ] [Chen, Jinpeng]Beijing University of Posts and Telecommunications, Beijing; 100786, China

通讯作者信息:

  • [chen, jinpeng]beijing university of posts and telecommunications, beijing; 100786, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 2194-5357

年份: 2021

卷: 1274 AISC

页码: 543-550

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:153/3606016
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司