• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Yichang (Liu, Yichang.) | Gen, Huiling (Gen, Huiling.)

收录:

EI Scopus

摘要:

Image denoising is to estimate a latent clean image from the noisy image. Existing denoising algorithms generally neglect smooth edges (missing details) while removing noises. In order to solve this problem, we propose an image denoising algorithm called fusion canny-edge operator image denoising based on CNN (FCDnet), which is composed of a denoising module based on Convolutional neural network (CNN), a canny edge module based on canny operator and a fusion module based on residual block. In addition, the edge extracted by canny edge extraction module is fused with the denoised image extracted by the denoising module to get a clearer and more detailed image. Experimental results show that the proposed algorithm obtains higher PSNR with more edge details and textures features than state-of-the-art methods on multiple datasets, i.e., Set5, Set14 and McMaster. © 2020 ACM.

关键词:

Textures Image fusion Edge detection Convolutional neural networks Image denoising

作者机构:

  • [ 1 ] [Liu, Yichang]Beijing University of Technology, Beijing, China
  • [ 2 ] [Gen, Huiling]Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2020

页码: 170-175

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:878/3913317
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司