• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Yichang (Liu, Yichang.) | Ma, Wei (Ma, Wei.)

收录:

EI Scopus

摘要:

Due to the good performance, image denoising based on Convolutional Neural Network (CNN) has been widely studied. However, most of existing methods use a single neural network for image denoising. The denoised images occur smooth edges (missing details) at a high noise level. To address this problem, we propose a dual convolutional neural network for image denoising, which is termed as Fusing Edge-information in image Denoising based on CNN (FEDnets). It consists of two parallel network branches, which respectively get the denoised image and edge details in an end-to-end manner. In addition, the edges are fused with the denoised image to get a clearer and more detailed image. Experimental results show that FEDnets can be effectively applied to noise removal tasks and recover clearer images with more edge details and textures features. © 2020 IEEE.

关键词:

Convolution Gaussian noise (electronic) Convolutional neural networks Textures Image denoising

作者机构:

  • [ 1 ] [Liu, Yichang]Beijing University of Technology, Beijing, China
  • [ 2 ] [Ma, Wei]Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2020

页码: 544-548

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:292/4429421
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司