• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Ming (He, Ming.) | Yao, Kaisheng (Yao, Kaisheng.) | Yang, Peng (Yang, Peng.) | Yao, Yuan (Yao, Yuan.)

收录:

EI Scopus

摘要:

It is already well known that recommender systems usually suffer from data sparsity issue of user-item interactions. However, representation learning can efficiently measure correlations between objects, which presents an unprecedented opportunity to alleviate this issue. In this paper, we propose a new distributional vector space model, Tag2Vec, for capturing meaningful relationships of users and items to improve the performance of recommender systems. First, we represent users and items as vectors respectively using tag embedding. With this innovative representation, the semantic relationships between users and items can be captured. To be specific, tag2vec learns representations of users and items in low-dimensional space from user-tag-item interactions using the skip-gram model. Second, we measure similarity between both users and items, and collaborative filtering can then be performed in the learned embedding space. To evaluate the performance of Tag2Vec, we conduct extensive experiments with two real world datasets for Top-N recommendation tasks. The results demonstrate that our proposed method significantly outperforms existing approaches. © 2020, Springer Nature Switzerland AG.

关键词:

Recommender systems Fuzzy systems Soft computing Vector spaces Semantics Embeddings Collaborative filtering

作者机构:

  • [ 1 ] [He, Ming]Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Yao, Kaisheng]Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Yang, Peng]Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Yao, Yuan]Beijing University of Chinese Medicine, Beijing; 100029, China

通讯作者信息:

  • [he, ming]beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 2194-5357

年份: 2020

卷: 1075

页码: 168-175

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

归属院系:

在线人数/总访问数:50/3918880
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司