• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Du, Jinlian (Du, Jinlian.) | Yang, Kaimin (Yang, Kaimin.) | Jin, Xueyun (Jin, Xueyun.)

收录:

EI Scopus

摘要:

In the existing genetic similarity search algorithm based on meta-path, the accuracy of genetic similarity calculation results is low because the implicit correlation between genes, diseases and other related factors is not taken into account. To solve this problem, an improved weighted meta-path genetic similarity search algorithm gSim-Search is proposed. This algorithm uses binary network to spread resources. It not only reconstructs the relationship between nodes in gene-disease-phenotype heterogeneous networks, but also assigns reasonable weights to the relationship, to express the degree of correlation of nodes and reflect the similarity of genes scientifically. It solves the problem of sparse connection and insufficient information in traditional metapath-based methods. Experiments show that the algorithm greatly improves the accuracy of predicting genetic similarity between breast cancer and obesity. © 2020, Springer Nature Singapore Pte Ltd.

关键词:

Learning algorithms Heterogeneous networks Graph theory Computation theory Genes

作者机构:

  • [ 1 ] [Du, Jinlian]Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Yang, Kaimin]Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Jin, Xueyun]Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [du, jinlian]beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1876-1100

年份: 2020

卷: 551 LNEE

页码: 249-260

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:2827/4261739
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司