• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zan, Tao (Zan, Tao.) | Wang, Hui (Wang, Hui.) | Wang, Min (Wang, Min.) (学者:王民) | Liu, Zhihao (Liu, Zhihao.) | Gao, Xiangsheng (Gao, Xiangsheng.)

收录:

Scopus SCIE

摘要:

Aiming at the problem of poor robustness of the intelligent diagnostic model, a fault diagnosis model of rolling bearing based on a multi-dimension input convolutional neural network (MDI-CNN) is proposed. Compared with the traditional convolution neural network, the proposed model has multiple input layers. Therefore, it can fuse the original signal and processed signal-making full use of advantages of the convolutional neural networks to learn the original signal characteristics automatically, and also improving recognition accuracy and anti-jamming ability. The feasibility and validity of the proposed MDI-CNN are verified, and its advantages are proved by comparison with the other related models. Moreover, the robustness of the model is tested by adding the noise to the test set. Finally, the stability of the model is verified by two experiments. The experimental results show that the proposed model improves the recognition rate, robustness and convergence performance of the traditional convolution model and has good generalization ability.

关键词:

convolutional neural network data fusion deep learning fault diagnosis rolling bearing

作者机构:

  • [ 1 ] [Zan, Tao]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Hui]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Min]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Zhihao]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Gao, Xiangsheng]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Wang, Min]Beijing Key Lab Elect Discharge Machining Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Wang, Hui]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

APPLIED SCIENCES-BASEL

年份: 2019

期: 13

卷: 9

2 . 7 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:52

JCR分区:2

被引次数:

WoS核心集被引频次: 26

SCOPUS被引频次: 37

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:193/3609455
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司