首页>成果

  • 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

[会议论文]

Knative Autoscaler Optimize Based on Double Exponential Smoothing

分享
编辑 删除 报错

作者:

Fan, Dayong (Fan, Dayong.) | He, Dongzhi (He, Dongzhi.)

收录:

EI Scopus

摘要:

Knative is a popular Kubernetes-based platform for managing serverless workloads with two main components Eventing and Serving. The Serving primitive helps to deploy serverless apps as Knative services and automatically scale them, even down to zero. However, the serving module uses a moving average method to calculate the number of pods, that calculated based on past data and not good at accounting for future changes. In this paper, we use double exponential smoothing to optimize the calculation of the number of pods. Preliminary experiments show that the results are better than the moving average. © 2020 IEEE.

关键词:

Industrial engineering Engineering Mechanical engineering Mechatronics

作者机构:

  • [ 1 ] [Fan, Dayong]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [He, Dongzhi]Faculty of Information Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

查看成果更多字段

相关文章:

来源 :

年份: 2020

页码: 614-617

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 7

近30日浏览量: 0

归属院系:

在线人数/总访问数:113/4506189
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司