• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Huiqing (Zhang, Huiqing.) | Li, Shuo (Li, Shuo.) | Li, Donghao (Li, Donghao.)

收录:

EI Scopus

摘要:

Sonar technology plays an important role in the development of marine resources and military strategy. Due to the bad underwater acoustic channel, the sonar image collected by sonar technology equipment is affected by various kinds of distortions easily. To obtain high-quality sonar image, we devise a novel dual-path deep neural network (DPDNN) to measure the quality of sonar image. In these two paths, we use the batch normalization layer to reduce the training time and take the skip operation to speed up the feature extraction. Based on the above two operations, we extract the micro-scopic and macro-scopic structure of sonar image, respectively. Finally, the global average pooling layer and the fully connection layer are used to connect the above two paths. Experiments show that our DPDNN has a significant improvement in prediction performance and efficiency, respectively. © 2020 IEEE.

关键词:

Marine biology Image quality Quality control Deep neural networks Neural networks Sonar Underwater acoustics

作者机构:

  • [ 1 ] [Zhang, Huiqing]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Li, Shuo]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Li, Donghao]Faculty of Information Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2020

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

归属院系:

在线人数/总访问数:1211/3896067
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司