• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lin, Fuyan (Lin, Fuyan.) | Zheng, Xin (Zheng, Xin.) | Wu, Qiang (Wu, Qiang.)

收录:

EI

摘要:

In application scenarios such as UAV inspection, deep learning-based object detection methods are increasingly used to improve the automation of line inspection. In the aerial view scene, the drone is usually fly at a high altitude from the ground, so the proportion of the object in the image is relatively small. When the YoloV3 network identifies small objects, the detection result would not be good because there is less information in the 8x downsampling feature map. In this paper, base on the LaSOT data set, the YoloV3 network has been modified by adjusting the values of anchors and establishing the 4x downsampling prediction layer to enhance the detection effect of small objects. Compared with the original YoloV3 network, the improved YoloV3 network has a certain improvement in convergence ability and detection accuracy compared to the original YoloV3 network. © 2020 IEEE.

关键词:

Aircraft detection Antennas Deep learning Neural networks Object detection Object recognition Signal sampling Unmanned aerial vehicles (UAV)

作者机构:

  • [ 1 ] [Lin, Fuyan]Beijing University of Technology, Faculty of Information Technology, Beijing, China
  • [ 2 ] [Zheng, Xin]Beijing University of Technology, Faculty of Information Technology, Beijing, China
  • [ 3 ] [Wu, Qiang]Beijing University of Technology, Faculty of Information Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2020

页码: 522-525

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:105/3602034
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司