• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liang, Yi (Liang, Yi.) | Zeng, Shaokang (Zeng, Shaokang.) | Liang, Yande (Liang, Yande.) | Chen, Kaizhong (Chen, Kaizhong.)

收录:

EI

摘要:

Collaborative Filtering (CF) is an important building block of recommendation systems. Alternating Least Squares (ALS) is the most popular algorithm used in CF models to calculate the latent factor matrix factorization. Parallel ALS on Hadoop is widely used in the era of big data. However, existing work on the computational efficiency of parallel ALS on Hadoop have two defects. One is the imbalance of data distribution, the other is lacking the fine-grained parallel processing on the rating data. Aiming on these issues, we propose an integrated optimized solution. The solution first optimizes the rating data partition with the consideration of both the number of involved data records and the partitioned data size. Then, the multithread-based fine-grained parallelism is introduced to process rating data records within a map task concurrently. Experimental results demonstrate that our solution can reduce the overall runtime of Hadoop ALS by 82.17% by maximum. © Springer Nature Switzerland AG 2020.

关键词:

Benchmarking Collaborative filtering Computational efficiency Data handling Distributed database systems Factorization

作者机构:

  • [ 1 ] [Liang, Yi]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Zeng, Shaokang]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Liang, Yande]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Chen, Kaizhong]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [liang, yi]faculty of information technology, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISSN: 0302-9743

年份: 2020

卷: 12093 LNCS

页码: 123-137

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:192/3611143
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司