• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Jiachun (Yang, Jiachun.) | Wang, Yanming (Wang, Yanming.) | Liu, Pengyu (Liu, Pengyu.) | Xu, Jie (Xu, Jie.)

收录:

EI

摘要:

In the process of high altitude detection, due to the hysteresis, solar radiation and other factors, there is a deviation between the measured data of temperature sensor and the standard data. To solve this problem, we combine depth neural network, wavelet function, SVM and XGBoost to propose an error prediction model. Morlet wavelet is used as the activation function of neural network to improve the prediction ability. The stacking integrated learning method is used to build a cascade prediction model to achieve extreme gradient promotion. By collecting the real data of meteorological observation, the dataset is established, and the proposed method is evaluated on this dataset. The experimental results show that compared with the traditional model, the improved model has certain effectiveness, MSE reduces 0.173, effectively overcomes the influence of solar radiation, and improves the measurement accuracy of the sensor. Moreover, this method has strong generalization and can be easily extended to other data prediction and regression tasks. © 2020 IEEE.

关键词:

Big data Forecasting Learning systems Neural networks Predictive analytics Solar radiation Support vector machines Temperature sensors

作者机构:

  • [ 1 ] [Yang, Jiachun]Tianjin Huayuntianyi Special Meteorological Detection Technology Co.LTD, Tianjin, China
  • [ 2 ] [Wang, Yanming]Tianjin Huayuntianyi Special Meteorological Detection Technology Co.LTD, Tianjin, China
  • [ 3 ] [Liu, Pengyu]Beijing University of Technology, Information Faculty, Beijing, China
  • [ 4 ] [Xu, Jie]Tianjin Huayuntianyi Special Meteorological Detection Technology Co.LTD, Tianjin, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2020

页码: 183-187

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:122/3611562
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司